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Summary

A new third term is incorporated within the multiplicative decomposition of the deformation
gradient in the context of geometrically non-linear mechanics of defective elastic-plastic crystals.
This enhanced description, when applied to an element of material of finite volume, accounts
explicitly for average local residual lattice distortion due to defects within that volume. The
magnitude of the distortion from this third term, determined analytically for an elastic cylindrical
volume of outer radius R containing a single dislocation line threading its centre, is estimated
as {[b/(πR)]2 + f 2 + g2}1/2, where b is Burgers vector magnitude, f accounts for elastic non-
linearity, and g accounts for core effects. For a straight screw dislocation in a third-order isotropic
elastic medium, at a dislocation density of 10 per cent of theoretical maximum, b/(πR) is on
the order of 0.1, f on the order of 0.01 and g is proportional to pressure exerted by the core and
can be significant. Predictions of stresses and dislocation density under simple shear and uniaxial
compression demonstrate differences from those of usual crystal plasticity at large strain and for
high hardening. Besides offering a natural and precise delineation of contributions from dislocation
velocity and dislocation generation to irreversible deformation, the three-term model allows for
residual elastic strains—including dilatation observed in experiments and atomic simulations—not
addressed by conventional two-term crystal plasticity.

1. Introduction

The decomposition of the total deformation gradient into a product of terms is a standard approach in
finite plasticity theory. Such a decomposition into two (or more) terms is re-examined in the present
work. Advancements are suggested here in an effort to refine the physical meaning of each term in
the decomposition and associated contributions to internal energy of the material.

Let F denote the total local deformation gradient for an element of crystalline material. For
simplicity, thermal effects are omitted, gliding dislocations are the only kind of defect considered,
and attention is restricted to a single crystal. Most typically, a two-term multiplicative decomposition
of the form

F = FEFP (1.1)

is invoked, where FE quantifies elastic lattice stretch and rotation, and FP accounts for plastic slip
due to dislocation glide. This decomposition was perhaps first written explicitly by Bilby et al. (1)
and was advanced soon after by Kröner (2) in a more comprehensive paper. Several other early
continuum theories of finite plasticity with dislocation density were compared in (3).
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Three-term decompositions, written as

F = FEFIFP, (1.2)

have also been proposed, where the mapping FI accounts for physics distinct from recoverable
elasticity (FE) and lattice preserving slip (FP). Such a decomposition was perhaps first written
explicitly by Kröner (2) and Bilby et al. (4), and was first considered from a thermodynamic point of
view by Kratochvíl (5). In more recent years, such a three-term decomposition has been introduced
in a number of works, with various definitions or derivations offered for FI (6)–(14).

A general premise (5) of three-term decompositions in the context of dislocation mechanics is
that FI accounts for microstructural rearrangements that increase the internal energy of the material
element relative to that of an element that has undergone slip but contains no dislocations or other
defects within. Such energy would be associated with locally heterogeneous residual elastic strain
fields and atomic phenomena (for example, core effects) not resolved by FE. Recent models for
metal plasticity (6, 10, 11) have linked a term akin to FI to anisotropic strain hardening associated
with defects within the element.

This article develops a new non-linear continuum description using three-term decomposition
(1.2), with a focus on the origin of each term as it relates to the underlying crystal lattice.

2. Conceptual arguments

With reference to decomposition (1.2), the following definitions are now stated for a local volume
element of crystalline material bounded by surface �:

FE : deformation due to traction applied to element boundary �,

associated with configuration change B̄ → B;
FI : deformation due to dislocations currently inside the element,

associated with configuration change B̃ → B̄;
FP : deformation due to dislocations that have slipped through the entire element,

associated with configuration change B0 → B̃.

Here ‘deformation’ is used in an average sense for the element since atomic positions within the
element will not change in an affine manner if defects are present or if traction along� is not uniform.
Local configurations of the element are as follows:

B0 : unstressed perfect lattice at some (initial) time ;
B̃ : unstressed slipped lattice containing no defects;
B̄ : externally unstressed & internally stressed slipped lattice containing defect(s);
B : externally & internally stressed slipped lattice containing defect(s).

Representative configurations and deformation mappings for a cubic lattice with edge dislocations
are illustrated in Fig. 1.
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Fig. 1 Deformation mappings and configurations for a single volume element within a single crystal

Regarding reference configuration B0, it is assumed that the volume element is embedded within
a larger slab of homogeneous material that is also unstressed in its (global) reference configuration.
In this case, the element and the slab each consist of atoms arranged regularly on a perfect crystal
lattice in the reference configuration. Each volume element fits exactly with its neighbours such that
slab in the global reference configuration is simply connected.

A first local intermediate configuration B̃ of the element results from the passage of dislocations
completely through the element. When separated from neighbouring elements, this element exhibits
a perfect lattice, but with slip steps evident on� where dislocations have entered/exited. The global
configuration corresponding to B̃ is generally disconnected.

Asecond local intermediate configuration B̄ of the element accounts for defects within that element
that have not yet fully passed through. This element is free from traction along its external surface�,
and thus is in a state of self stress. The remainder of the slab may contain defects and similar residual
stresses; each element comprising the slab must, in general, be mechanically removed from its
neighbours so that it too is in a state of self stress. External boundaries of the entire slab are also
necessarily traction free in this global intermediate configuration.

A local current configuration B of the element is achieved when the element is stressed and
deformed, along with its neighbours, so that all volume elements fit together and the body is
simply connected in the global current configuration. In the local current configuration, traction
must generally be applied to�. External surfaces of the entire slab can support traction in the global
current configuration, but need not do so. If the remainder of the slab outside of the volume element
contains defects, local traction may not necessarily vanish on � in the current configuration as a
result of long-range stress fields of these defects, even if the body is globally free of applied surface
and body forces.

The preceding developments are applied to a volume element containing a single edge dislocation
in Section 3 and a single screw dislocation in Section 4. Generalisation to multiple defects follows
in Section 5. Representative calculations using a constitutive model incorporating the present
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three-term description are reported in Section 6 for several simple loading paths, followed by general
discussion.

3. Edge dislocation

Consider a single edge dislocation in an isotropic elastic cylinder, as shown in Fig. 2. In an undeformed
state on the left, the cylinder is of length L and radius R. Let r denote the radius of the image of
the dislocation core in this undeformed state. Coordinates for the left side of Fig. 2 are {X, Y , Z} =
{ρ cos θ, ρ sin θ, Z}; cylindrical coordinates are {ρ, θ,Z}, where θ ∈ (−π, π ]. Boundaries of the
outside of the cylinder and the core are � and σ , and �+ and �− are boundaries of the slip plane
along {X, 0+, Z} and {X, 0−, Z} for −R � X � −r. Assume L � R so that the problem becomes
two dimensional (plane strain with z = Z). Let

b = x(X, 0+) − x(X, 0−) = u(X, 0+) − u(X, 0−), −R � X � −r. (3.1)

The magnitude of the Burgers vector is b, and b � r < R. The displacement field

u = x(ρ, θ ) − X, v = y(ρ, θ ) − Y . (3.2)

Assume that � and σ are traction free, and let ν denote Poisson’s ratio. The displacement field of
the exact solution to this boundary value problem in the context of linear elasticity is (15)

u = b

2π

[
θ + 1

4(1 − ν)
(1 + a1 − a2) sin 2θ

]
; (3.3)

v = − b

8π (1 − ν)
[2(1 − 2ν) ln ρ + a3 + (1 + a1 − a2) cos 2θ] ; (3.4)

a1(ρ) = (3 − 4ν)ρ2

R2 + r2
, a2(ρ) = R2r2

ρ2(R2 + r2)
, a3(ρ) = 2ρ2

R2 + r2
. (3.5)

Non-zero stress components (physical cylindrical components) are Tρρ , Tθθ , Tρθ and Tzz =
ν(Tρρ + Tθθ ). When ν �= 0, replacement of the plane strain boundary condition with free end

Fig. 2 Edge dislocation parallel to Z-axis centred in elastic cylinder of radius R and (out-of-plane) length L;
Burgers vector magnitude is b; core radius is r
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conditions along Z = ±L/2 will lead to non-zero z-displacement w and perturbation of the other
components u and v.

Often it is assumed that the cylinder is very large relative to the radial coordinate such that
displacements (and stresses) vanish as R → ∞ giving a1, a3 → 0. Another frequent assumption is
that effects of the traction free core can be neglected or that the radial coordinate is sufficiently larger
than the core radius, leading to r2/ρ2 → 0 and a2 → 0. When such terms corresponding to outer
and core radii are omitted, strain energy per unit length e is

e = Gb2

4π (1 − ν)
ln

R

r
= ē + e′ = Gb2

12π

[
1 − ν − 2ν2

(1 − ν)2

]
ln

R

r
+ Gb2

12π

[
2 − 2ν + 2ν2

(1 − ν)2

]
ln

R

r
, (3.6)

where G is the linear elastic shear modulus, ē is the volumetric contribution to the total line energy
and e′ is the deviatoric contribution.

To motivate later discussion regarding distortion, define the following surface integral:

βββI
lin

def= 1

V

∫
�

u ⊗ Nd�, (3.7)

where V = πR2L is the volume of the undeformed domain (including the core region) and u =
ue1 + ve2 +we3 with {ei} the Cartesian basis. The unit outward normal to� is N = cos θe1 + sin θe2.
Applying this definition with u from (3.3), defining C = (1 + a1 − a2)|ρ=R, and noting that d� =
RLdθ ,

(
βI

12

)
lin

=
(
βI

xY

)
lin

= 1

πR2L

∫
�

u sin θd� = 1

πR

∫ π

−π
u sin θdθ

= b

2π2R

∫ π

−π
θ sin θdθ + b

8(1 − ν)π2R

∫ π

−π
C sin θ sin 2θdθ

= b

2π2R
(sin θ − θ cos θ )|π−π + Cb

48(1 − ν)π2R
(3 sin θ − sin 2θ )|π−π

= − b

2π2R
(θ cos θ )|π−π = b

πR
. (3.8)

It can be verified by direct integration that other planar components vanish,

(
βI

11

)
lin

= 1

πR

∫ π

−π
u cos θdθ = 0, (3.9)

(
βI

22

)
lin

= 1

πR

∫ π

−π
v sin θdθ = 0, (3.10)

(
βI

21

)
lin

= 1

πR

∫ π

−π
v cos θdθ = 0, (3.11)

and since w = 0 and N · e3 = 0 on �, out-of-plane components all vanish identically:
(
βI

13

)
lin =(

βI
23

)
lin = (

βI
31

)
lin = (

βI
32

)
lin = (

βI
33

)
lin = 0.
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If the domain of integration is extended to include the core surface σ and the slip plane �±, then
V0 = π (R2 − r2)L is the reference volume of a simply connected domain and

V

V0

(
βI

12

)
lin

+ 1

V0

∫
σ

u(− sin θ )dσ − 1

V0

∫
�+

ud� + 1

V0

∫
�−

ud�

= bR

π (R2 − r2)
− br

π (R2 − r2)
− 1

π (R2 − r2)

[
b

2
(R − r) + b

2
(R − r)

]

= b

π (R + r)
− b

π (R + r)
= 0, (3.12)

consistent with the proof that in the context of linear elastostatics, volume-averaged strain 1
2V0

∮
(u ⊗

N + N ⊗ u)dS = 1
2V0

∫ [∇u + (∇u)T]dV0 must vanish in a domain with uniform material properties
that is in a state of self stress (that is, a homogeneous body with no traction applied to external
surfaces, traction continuity across internal surfaces, and no applied body forces) (16). Summed
contributions from core and slip surfaces (σ and �±) to expressions analogous to (3.12) for other
planar components of distortion also vanish.

Three-term decomposition F = FEFIFP of (1.2) is now revisted in the context of a volume
element containing an isolated edge dislocation embedded in a larger slab of material that may
contain other defects in its deformed state. Consider the cylindrical volume shown in Fig. 2, which
is identified with a volume element of material to which (1.2) is applied.

The first local intermediate configuration B̃ of this element is identified with the left part of Fig. 2:
no local stress within the element or traction along its boundaries. The elastic cylinder, minus the
core region, is simply connected since surfaces �± are treated as distinct.

The second local intermediate configuration B̄ of the element is identified with the right part of
Fig. 2. This element is free from traction along its external surface �, and thus is in a state of self
stress in two dimensions (recall out-of plane stress Tzz is associated with the Poisson effect and plane
strain). The elastic cylinder, when the core region is removed, now becomes multiply connected when
referential surfaces �± are displaced relative to one another by the Burgers vector and then bonded
together. The remainder of the slab may contain defects and similar residual stresses; each element
comprising the slab must, in general, be removed from its neighbours so that it too is in a state of
self stress.

A local current configuration B of the element is achieved when the element is stressed and
deformed, along with its neighbours, so that all volume elements fit together and the body is
continuous in the global current configuration. In the local current configuration for each element
(not shown in Fig. 2), traction is generally non-zero on �.

First consider plastic deformation map FP, which accounts for n dislocations that have already
moved completely through the cylinder, from left to right. Attention is restricted to edge dislocations
on the single slip plane �, which is now extended to bisect the entire cylinder along Y = 0. In this
case, plastic deformation is the simple shear

FP def= 1 + γ e1 ⊗ e2, (3.13)

where the cumulative plastic shear from relative sliding of the two sections of the cylinder is

γ
def=

∑
n

1

V

∫ π

0
bL R sin θdθ = 2bn

πR
. (3.14)
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There is no plastic volume change, JP = det FP = 1 + e1 · e2 = 1. Since FP−1 = 1 − γ e1 ⊗ e2,
it follows that ḞP = ḞPFP−1 = γ̇ e1 ⊗ e2. Assume for simplicity that the dislocations are equally
spaced; their density is then ζ = 1/(πR2).Assume also that dislocations move with constant velocity
υ = 2Rṅ in the direction of e1, where ṅ is the number of dislocations per unit time that transit the
diameter of the cylinder; then the usual so-called Orowan equation is recovered:

γ̇ = 2bṅ

πR
= bυ

πR2
= ζbυ. (3.15)

Next consider the mapping FI. In Cartesian coordinates, this can be written

FI = 1 + βββI. (3.16)

The distortion, by definition, can be further partitioned into the sum

βββI = βββI
lin + βββI

nonlin + βββI
core. (3.17)

The linear term is defined as the distortion of the outer boundary� of the elastic cylinder calculated
from linear elasticity, where from (3.7) and (3.8),

βββI
lin = b

πR
e1 ⊗ e2 =

(
b2ζ/π

)1/2
e1 ⊗ e2. (3.18)

This non-symmetric term clearly includes both stretch and rotation. The other two terms are
corrections accounting for non-linear elastic effects and core effects that are omitted by the linear
elastic solution. Because of non-linearity, these terms in general cannot be determined exactly from
superposition of solutions of decoupled boundary value problems.

The non-linear correction is defined as (17)

βββI
nonlin

def= 1

V

∫
V

∇u dV , (3.19)

or in indicial notation (
βI

nonlin

)
αβ

def= 1

V

∫
V

∂uα
∂Xβ

dV , (3.20)

where uα are local displacements of the self-equilibrated body in configuration B̄ measured from Xβ ,
which are local coordinates in configuration B̃. Let Cαβγ δ denote the second-order elastic constants
and Sαβγ δ the complementary elastic compliance. Let Cαβγ δεζ denote third-order elastic constants,
omitted in the preceding linear elastic analysis of the edge dislocation. Particular forms of elastic
stiffness tensors and representative values for isotropic solids are described in Appendix A. Self-
equilibrium conditions for the cylinder in configuration B̄ lead to vanishing of its volume averaged
Cauchy stress, giving (16, 17)(

βI
nonlin

)
μν

= − 1

V
Sμναβ

(
Cαεχδ

∫
V

∂uβ
∂Xε

∂uχ
∂Xδ

dV + Cβεχδ
∫

V

∂uα
∂Xε

∂uχ
∂Xδ

dV

+ 1

2
Cαβχδ

∫
V

∂uε
∂Xχ

∂uε
∂Xδ

dV + 1

2
Cαβχδεφ

∫
V

∂uχ
∂Xδ

∂uε
∂Xφ

dV

)
. (3.21)

to second order in displacement gradients ∇u, assuming elastic moduli are independent of location
within V . Terms of orders three and higher in displacement gradients, involving elastic constants
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of orders four and higher, are omitted. By this definition, βββI
nonlin is symmetric (that is, due to the

symmetry of the first two components of the elastic compliance tensor); a rigid body rotation could be
superposed without violating the self-equilibrium constraint. Logically,βββI

nonlin vanishes in the linear
elastic approximation since products of order two in displacement gradients are inconsequential in
the stress field of linear elasticity.

Evaluation of integral (3.21) requires knowledge of the displacement field u(X) for the non-linear
elastic solution of an edge dislocation embedded in a cylinder of a third-order elastic material with
finite boundaries. No known closed-form solution exists to this boundary value problem that permits
ready evaluation of the integral. Zubov (18) tersely presents an exact analytical solution for an edge
dislocation embedded in an infinitely extended domain of a semi-linear material; the displacement
field of this solution is expressed in terms of complex functionals that cannot be easily inserted into
(3.21). The stress field of the non-linear solution does, however, demonstrate significant differences
from the linear elastic solution at distances up to the magnitude of several Burgers vectors from the
core. Seeger et al. (19) give an approximate iterative solution for an edge dislocation accounting for
up to second-order terms in displacement gradients, but the displacement field is written as a series of
complex functions that do not permit analytical evaluation of (3.21). On the other hand, a tractable,
yet still approximate, analytical non-linear elastic solution does exist for the screw dislocation, as
will be discussed later in Section 4.

An analytical approximation for the dilatation due to non-linear elastic effects from residual
stresses does exist, however, for isotropic materials as well as several cubic crystal classes. When
contributions of products of orders three and higher in local displacement gradients are omitted,
the volume change of an isotropic cylinder with an edge dislocation due to non-linear elasticity
is (16, 17)

�V

V
=
[

1

K
(K ′ − 1)ē + 1

G

(
G′ − G

K

)
e′
]
ζ

= e

3

[
1 − ν − 2ν2

(1 − ν)K
(K ′ − 1) + 2 − 2ν + 2ν2

(1 − ν)G

(
G′ − G

K

)]
ζ

=
[

1 − ν − 2ν2

12π (1 − ν)2

G

K
(K ′ − 1) + 2 − 2ν + 2ν2

12π (1 − ν)2

(
G′ − G

K

)]
b2ζ ln

R

r
= Ab2ζ ln

R

r
, (3.22)

where K is the linear elastic bulk modulus, K ′ and G′ are pressure derivatives of the incremental bulk
and shear moduli in the stress-free reference state (and can be related to third-order elastic constants
as described in Appendix A), A is a constant dimensionless function of the elastic constants, and
ζ = L/V . In this solution, e correctly incorporates only contributions from second-order elastic
constants (16), but effects of non-linearity and boundary conditions on the dislocation core and free
outer radius to this contribution to elastic energy are neglected. To integral terms of at least first
order in displacement gradients (17),

�V/V ≈ det(1 + βββI
nonlin) − 1 ≈ trβββI

nonlin. (3.23)

Knowledge of dilatation alone is insufficient to determine all components ofβββI
nonlin resulting from

an edge dislocation in an isotropic cylinder. Following (19), (15), assume that the displacement field

u = u(1) + u(2) + · · · ≈ u(1) + u(2), (3.24)
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where u(1) is the linear elastic solution and u(2) is a correction that accounts for, in the resulting
stress field, non-linear elastic effects of up to second order in displacement gradients. Let u(2) =
u(2)e1 + v(2)e2 + w(2)e3. Assume again that the cylinder is long (plane strain) and that the second-
order correction is independent of the orientation of slip plane�. These symmetry arguments suggest

u(2) = bχ (ρ) cos θ, v(2) = bχ (ρ) sin θ, w(2) = 0, (3.25)

where χ (ρ) is a dimensionless correction to the radial displacement field from non-linear effects and
ρ is the radial coordinate of the undeformed cylinder (left side of Fig. 2). Applying the divergence
theorem,

(βI
nonlin)11 ≈ 1

V

∫
V

∂u(2)

∂X
dV = 1

V

∫
�

bχ cos2 θd�

= b

πR
χ (R)

∫ π

−π
cos2 θdθ = b

R
χ (R), (3.26)

(βI
nonlin)22 ≈ 1

V

∫
V

∂v(2)

∂Y
dV = 1

V

∫
�

bχ sin2 θd�

= b

πR
χ (R)

∫ π

−π
sin2 θdθ = b

R
χ (R), (3.27)

and all other terms vanish identically:(
βI

12

)
nonlin

=
(
βI

21

)
nonlin

=
(
βI

13

)
nonlin

=
(
βI

31

)
nonlin

=
(
βI

23

)
nonlin

=
(
βI

32

)
nonlin

=
(
βI

33

)
nonlin

= 0. (3.28)

Therefore, from (3.23), a coarse approximation for the edge dislocation is

χ ≈ Ab

2πρ
ln
ρ

r
,

(
βI

11

)
nonlin

=
(
βI

22

)
nonlin

≈ �V

2V
≈ Ab2

2
ζ ln

R

r
. (3.29)

Taking representative values from Table A.1 of Appendix A, (3.22) and (3.29) give A ≈ 1
12 and, with

and r ≈ b, (βI
nonlin)11 = (βI

nonlin)22 ≈ 1
24π

b2

R2 ln R
b .

No analytical solution exists for βββI
core. By definition, continuum elasticity theory breaks down

inside the core region, but atomic theory can be used to estimate its contribution. Term βββI
core

accounts for uncertainty in core size and shape (20) and non-zero traction imparted by the core
on the surrounding continuum (15). In elastic calculations considered thus far, assumptions of a
cylindrical core with minimum radius r ≈ b (20) imparting no traction on the surrounding material
have been used. Presumably, for a small cylinder (large defect density), components of βββI

core could
be comparable or larger than those of βββI

nonlin.
In atomic simulations of an edge dislocation in α-iron (21), total dilatation was found to obey

�V/V = [0.37 + 0.07 ln(R/b)]b2ζ , with contributions from non-linear and core effects estimated
as similar orders of magnitude, though several arbitrary choices were made in partitioning non-
linear and core contributions. In atomic simulation of the strain field of this same dislocation type
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(22), it was found that deviations from the linear elastic Volterra solution could be fit to an elliptical
expansion field centred slightly below the centre of the extra half-plane. The procedure for extracting
residual strain fields induced by dislocation lines in atomic simulations is intricate, requiring pages
of discussion in (21) too lengthy to repeat here and to which the reader is referred for details. Only
their preferred end result (p. 3896 of (21) giving the just-mentioned form of �V/V ) is used in later
Table 1; this result may of course be subject to possible inaccuracies associated with the numerical
method of relaxation, imposition of non-unique initial conditions and boundary constraints, selection
of Eulerian versus Lagrangian coordinates, choice of atomic potential, etc., noted in (21).

Three other obvious idealisations have been made in the definition of FI. First, the linear term
would be slightly different if the top and bottom faces of the cylinder were relaxed and Poisson’s ratio
were non-zero. Second, the dislocation is assumed centred in the cylinder. More general dislocation
arrangements are mentioned in Section 5. Third, isotropic elasticity has been assumed. Anisotropic
solutions would be more realistic, but general analytical solutions are not available in compact
equations that are easily manipulated, except for cubic crystals of certain classes for which a solution
for volume change similar to (3.22) exists (16, 17).

Combining (3.16), (3.17), (3.18), and (3.29),

FI = 1 + βββI
lin + βββI

nonlin + βββI
core

≈ 1 + b

πR
e1 ⊗ e2 + A

2π

b2

R2
ln

R

r
(e1 ⊗ e1 + e2 ⊗ e2) + βββI

core

= 1 + (b2ζ/π )1/2e1 ⊗ e2 + A

2
b2ζ ln[(πr2ζ )−1/2](e1 ⊗ e1 + e2 ⊗ e2) + βββI

core. (3.30)

If the core term is omitted and the approximations r = b and A = 1
12 are used,

βββI = FI − 1 ≈ (b2ζ/π )1/2e1 ⊗ e2 + b2

24
ζ ln[(πb2ζ )−1/2](e1 ⊗ e1 + e2 ⊗ e2). (3.31)

Non-vanishing components of (3.31) are shown in Fig. 3, along with magnitude

‖βββI‖ = (βI
αββ

I
αβ )1/2 = {[(βI

lin)12]2 + 2[(βI
nonlin)11]2 + g2}1/2

≈ {[(b/(πR)]2 + 1
288 [b/(πR)]4[ln(R/b)]2}1/2, (3.32)

where g is O(‖βββI
core‖) and is again omitted in the final approximation. The linear contribution

dominates. The theoretical maximum dislocation density is approached as R → Rmin = b and
b2ζ → b2ζmax = 1

π ; for example, ζmax ≈ 3 × 1018m−2 for b2 ≈ 0.1 nm2. Several values are listed
in Table 1. Both linear and dilatational contributions can be significant relative to applied elastic
strain associated with FE, since elastic shear strains at yielding in most crystals are on the order of
10−4 − 10−2. Also shown in the rightmost column of Table 1 is the normal strain (estimated as half
of the total dilatation) reported from atomic simulation of a [100] edge dislocation α-iron (21). For
R/b � 1.7, results of atomic calculation—which account for elastic anisotropy, elastic non-linearity
and core effects—are no more than one order of magnitude larger than the third column of Table 1
that addresses isotropic non-linear elasticity alone, though generic properties from Table A.1 used
in calculation of the latter are not intentionally representative of iron.
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Fig. 3 Analytical estimate of shear component βI
12 and dilatation�V/(2V ) for single edge dislocation centred

in isotropic elastic cylinder of radius R. Normalized dislocation density is ζ/ζmax = b2/R2

Table 1 Estimated contributions to FI for isolated edge dislocation

R/b ζ/ζmax (βI
lin)12 �V/(2V ) Atomic simulation (21)

1 1 0.32 0 5.9 × 10−2

1.7 0.35 0.19 2.4 × 10−3 2.3 × 10−2

3 0.11 0.11 1.6 × 10−3 7.8 × 10−3

10 1.0 × 10−2 3.2 × 10−2 3.0 × 10−4 8.5 × 10−4

100 1.0 × 10−4 3.2 × 10−3 6.1 × 10−6 1.1 × 10−5

Effects of elastic anisotropy are considered in Appendix C. There it is shown that �V/(2V )
associated withβββI

nonlin may be expected, due to elastic anisotropy, to increase or decrease relative to
the isotropic solution by no more than a factor of around six for dislocations on typical glide systems
in many Face Centred Cubic (FCC) or Body Centred Cubic (BCC) metals. Note that βββI

lin, which
tends to dominate the magnitude of total residual lattice distortion, is unaffected by anisotropy.

From the polar decomposition theorem applied to (1.2), F = VEREFIFP. Inverse stretch VE−1 is
associated with unloading of the cylinder from its current deformed state (23), and RE is elastic
rotation that encompasses all rigid body rotation in the absence of defects. Presuming FI and
FP are calculable from definitions given above, and that total deformation F is imposed, then
FE = FFP−1FI−1 is simply the remainder.

Several points of clarification are in order. Yielding is indicated by non-negligible plastic
deformation described by FP, which in turn depends on plastic slip γ in (3.13). For monotonic
loading, FP = 1 and γ = 0 at stresses below the yield limit. Residual lattice distortionβββI can be non-
zero whenever the body contains dislocations, regardless of whether or not plastic deformation takes
place concurrently (that is, regardless of whether or not dislocations are mobile). It is emphasised
that FI is not ‘plastic deformation’ but rather a kind of ‘residual elastic lattice deformation’, which
justifies the summation of linear, non-linear and core elastic fields in (3.17) and (3.30). The solution
for the linear elastic fields, though well known, has been included here in order to enable derivation
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of βββI
lin in a form not presented elsewhere. None of the components of βββI (linear, non-linear or core)

can be included in FE since by definitions given in Section 2, FE consists of reversible or recoverable
elastic deformation, while FI consists of residual deformation. Instead of the summation approach
in (3.17), a multiplicative split such as FI = FI

linFI
nonlinFI

core could be assumed. The difference
between the two approaches would be O(‖βββI‖2), which a posteriori should be small relative to ‖βββI‖
according to Table 1. Therefore, use of such a multiplicative split is not warranted at present.

4. Screw dislocation

Now consider an isolated screw dislocation of Burgers magnitude b aligned along the Z-axis,
contained within a cylinder of the same geometry as shown on the left side of Fig. 2. Boundaries of
the outside of the cylinder and the core are� and σ , and �+ and �− are boundaries of the slip plane
along {X, 0+, Z} and {X, 0−, Z} for −R � X � −r. Let

b = z(ρ, π ) − z(ρ,−π ), R � ρ � r. (4.1)

Let the resultant force and torque on each end of the cylinder at Z = ±L/2 vanish. In physical
components, the displacement field for the linear solution is (15)

uθ = −bρZ

πR2
, uz = w = bθ

2π
. (4.2)

The analogue of (3.6), for L → ∞, is

e = e′ = Gb2

4π
ln

R

r
, ē = 0. (4.3)

Applying definition (3.7) for this isolated screw dislocation,

(
βI

32

)
lin

= (βI
zY )lin = 1

πR2L

∫
�

w sin θd� = 1

πR

∫ π

−π
w sin θdθ

= b

2π2R

∫ π

−π
θ sin θdθ = b

2π2R
(sin θ − θ cos θ )|π−π = b

πR
. (4.4)

All other components vanish:

(
βI

11

)
lin

=
(
βI

12

)
lin

=
(
βI

13

)
lin

=
(
βI

21

)
lin

=
(
βI

22

)
lin

=
(
βI

23

)
lin

=
(
βI

31

)
lin

=
(
βI

33

)
lin

= 0. (4.5)

Three-term decomposition F = FEFIFP of (1.2) is now revisted in the context of a volume
element containing an isolated screw dislocation embedded in a larger slab of material that may
contain other defects in its deformed state.

First consider plastic deformation map FP, which accounts for n dislocations that have already
moved completely through the cylinder. Attention is restricted to screw dislocations on the single
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slip plane �, which is now extended to bisect the entire cylinder along its axis. In this case, plastic
deformation is the simple shear

FP def= 1 + γ e3 ⊗ e2, (4.6)

where the cumulative plastic shear from relative sliding of the two sections of the cylinder is

γ
def=

∑
n

1

V

∫ π

0
bL R sin θdθ = 2bn

πR
. (4.7)

There is no plastic volume change: JP = det FP = 1 + e3 · e2 = 1. Assume for simplicity that the
dislocations are equally spaced; their density is then ζ = 1

πR2 . Assume also that dislocations move
with constant velocity υ = 2Rṅ; then

γ̇ = 2bṅ

πR
= bυ

πR2
= ζbυ. (4.8)

Equations (4.7) and (4.8) are identical to (3.14) and (3.15), respectively.
Next consider the mapping FI. Equations (3.16) and (3.17) still apply. The linear contribution is

βββI
lin = b

πR
e3 ⊗ e2 =

(
b2ζ/π

)1/2
e3 ⊗ e2, (4.9)

which includes both strech and rotation. The non-linear correction is defined as in (3.19), (3.20) and
(3.21). When contributions of products of orders three and higher in local displacement gradients
are omitted, the volume change of an isotropic cylinder with a screw dislocation due to non-linear
elastic effects is (16, 17)

�V

V
= e

G

(
G′ − G

K

)
ζ = 1

4π

(
G′ − G

K

)
b2ζ ln

R

r
= Ab2ζ ln

R

r
, (4.10)

where A is a different constant dimensionless function of the elastic constants, and ζ = L/V . Taking
values from Table A.1 as representative, A ≈ 1

32 . In this solution, e = e′ correctly incorporates only
contributions from second-order elastic constants (16), but effects of nonlinearity and boundary
conditions on the dislocation core and free outer radius to this contribution to elastic energy are
neglected.

Knowledge of the dilatation alone is insufficient to determine all components of βββI
nonlin resulting

from a screw dislocation in an isotropic cylinder. Evaluation of integral (3.21) requires knowledge of
the displacement field u(X) for the non-linear elastic solution of a screw dislocation embedded in a
cylinder of a third-order elastic material with finite boundaries. No known exact closed-form solution
exists to this boundary value problem that permits ready evaluation of the integral. Zubov (24)
presents an exact analytical solution for a screw dislocation embedded in an incompressible non-
linear elastic material. The stress field of this non-linear solution demonstrates significant differences
from the linear elastic solution as ρ → b. The incompressibility constraint (ν → 0.5) is not
realistic for most crystals and precludes calculation of dilatation due to geometric and material
nonlinearity. Teodosiu (15) gives an approximate iterative solution for a screw dislocation embedded
in a cylindrical domain accounting for up to second-order terms in displacement gradients, where
the cylinder is infinitely long but may have free boundaries at r and R. This solution will be used to
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inform (3.21) in what follows. Earlier, Willis (25) obtained a similar, but not identical, approximate
solution for a screw dislocation in an infinite medium using Green’s functions.

Following (15) (p. 211), assume that (3.24) holds, where u(1) is the linear elastic solution and u(2)

is a correction that accounts for, in the resulting stress field, non-linear elastic effects of up to second
order in displacement gradients. Let u(2) = u(2)e1 + v(2)e2 + w(2)e3. The approximate non-linear
solution is of the form

u(2) = η(ρ) cos θ, v(2) = η(ρ) sin θ, w(2) = 0, (4.11)

where η(ρ) is a correction to the radial displacement field from non-linear effects, and ρ is the radial
coordinate of the dislocated cylinder. When the core surface at ρ = r is traction-free, the solution is
(15) (p. 231)

η(ρ) = c1

ρ
+ c2ρ + c3

ln ρ

ρ
, (4.12)

where c1, c2 and c3 depend on b, r, R, and the second- and third-order elastic constants, and are
given in Appendix B. Applying the divergence theorem,

(βI
nonlin)αβ ≈ 1

V

∫
V

∂u(2)
α

∂Xβ
dV = 1

V

∫
�

u(2)
α Nβd�

= 1

π [R − η(R)]2

∫ π

−π
u(2)
α Nβ [R − η(R)]dθ, (4.13)

where the Lagrangian radial coordinate of � is R − η(R), since ρ is the Eulerian radial coordinate
in the solution of (15). Non-vanishing components of (4.13) are

(βI
nonlin)11 ≈ 1

π [R − η(R)]
∫ π

−π
η(R) cos2 θdθ = η(R)

R − η(R)
, (4.14)

(βI
nonlin)22 ≈ 1

π [R − η(R)]
∫ π

−π
η(R) sin2 θdθ = η(R)

R − η(R)
; (4.15)

all other terms vanish identically, that is, (3.28) applies for the screw dislocation.
Combining (3.16), (3.17), (4.4), (4.14) and (4.15),

FI = 1 + βββI
lin + βββI

nonlin + βββI
core

≈ 1 + b

πR
e3 ⊗ e2 + η(R)

R − η(R)
(e1 ⊗ e1 + e2 ⊗ e2) + βββI

core

= 1 + (b2ζ/π )1/2e3 ⊗ e2 + η[(πζ )−1/2]
(πζ )−1/2 − η[(πζ )−1/2] (e1 ⊗ e1 + e2 ⊗ e2) + βββI

core. (4.16)

Calculable terms of (4.16) and dilatation �V/(2V ) from (4.10) are compared in Fig. 4, along with
the magnitude

‖βββI‖ = (βI
αββ

I
αβ )1/2 = {[(βI

lin)32]2 + f 2 + g2}1/2

≈ {[(b/(πR)]2 + 2[(βI
nonlin)11]2}1/2, (4.17)
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Fig. 4 Analytical estimate of shear componentβI
32, non-linear contributionβI

11 = βI
22, and dilatation�V/(2V )

for single screw dislocation centred in isotropic elastic cylinder of radius R. Normalised dislocation density is
ζ/ζmax = b2/R2. In part (a), total and linear curves are visibly indistinguishable.

Table 2 Estimated contributions to FI for isolated screw dislocation.

R/b ζ/ζmax (βI
lin)32 (βI

nonlin)11 �V/(2V ) (βI
core)11 · G/p̂

1 1 0.32 5.9 × 10−2 0 ∞
1.7 0.35 0.19 2.7 × 10−2 9.1 × 10−4 0.40
3 0.11 0.11 8.2 × 10−3 6.1 × 10−4 9.3 × 10−2

10 1.0 × 10−2 3.2 × 10−2 7.0 × 10−4 1.2 × 10−4 7.6 × 10−3

100 1.0 × 10−4 3.2 × 10−3 6.2 × 10−6 2.3 × 10−6 7.5 × 10−5

where f = √
2(βI

nonlin)11 = √
2(βI

nonlin)22 is the non-linear elastic contribution, and g is O(‖βββI
core‖)

and is omitted in the final approximation. In the context of (4.19) and (4.20) to be discussed later,
g = √

2(βI
core)11 = √

2(βI
core)22 ∝ p̂/G and increases with increasing ζ , with p̂ radial pressure

exterted by the core on the surrounding crystal. The linear term exceeds f , though the latter is not
insignificant. Several values are listed in Table 2. Linear, non-linear and core contributions can all
be substantial relative to applied elastic strain associated with FE.

Note that an approximation of the non-linear contribution in terms of dilatation such as that made
in (3.29) is not necessary for the screw dislocation since the second-order non-linear elastic solution
for η is available for this geometry. As is clear from Table 2, non-linear term (βI

nonlin)11 exceeds
dilatational term�V/(2V ) by several orders of magnitude near the theoretical maximum density, but
both terms are of comparable magnitude for ζ/ζmax � 0.01. The former is presumably more accurate
because it accounts consistently for non-linear contributions to the elastic energy of the dislocation
and the free boundary at ρ = R; however, it is still an approximation because non-linear contributions
to the average axial stress need not vanish (the cylinder is not self-equilibrated in the axial direction).
The latter approximation (dilatation) relies on elastic energy per unit length of a screw dislocation
in an infinite linear elastic medium. Both approximations [(βI

nonlin)11 and �V/(2V )] omit higher-
order corrections involving contributions of terms of order three and higher in local displacement
gradients to stresses and average strains, and both also neglect contributions of the dislocation core to
traction at ρ = r. For values of material constants considered here, both approximations do however

 
hs



[16:42 5/2/2014 hbt026.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 142 127–158

142 J. D. CLAYTON

demonstrate positive volume change that has been confirmed experimentally for cold-worked metals
with cubic symmetry (26).

Now consider βββI
core. As for the edge dislocation, continuum elasticity theory cannot be applied to

describe the core of a screw dislocation, and βββI
core accounts for uncertainty in core size and shape

and non-zero traction imparted by the core on the surrounding crystal. In an isotropic linear elastic
solid, the contribution of a radial pressure p̂ acting on core surface ρ = r to the dilatation of the solid
can be determined analytically. Displacement û imparted by such a core pressure is radial (15):

û(ρ) = p̂r2

2G(R2 − r2)

[
(1 − 2ν)ρ + R2

ρ

]
. (4.18)

Non-zero components of βββI
core then follow as

(βI
core)11 ≈ 1

πR

∫ π

−π
û cos2 θdθ = (1 − ν)p̂

G

r2

R2 − r2
= (1 − ν)p̂

G

ζ/ζmax

1 − ζ/ζmax
, (4.19)

(βI
core)22 ≈ 1

πR

∫ π

−π
û sin2 θdθ = (1 − ν)p̂

G

r2

R2 − r2
= (1 − ν)p̂

G

ζ/ζmax

1 − ζ/ζmax
. (4.20)

Predicted components of βββI
core can be comparable or larger than those of βββI

nonlin, and the core
contribution becomes singular as the cylinder shrinks to the core itself (R/b → 1). Representative
values are listed in Table 2 for r = b and ν = 1

4 . Core pressure p̂ at a prescribed radius r must
be supplied by atomic theory; recent calculations for dislocations in aluminum (27) suggest that
|p̂| � 0.1G. At p̂/G = 1

10 , βββI
core ≈ βββI

nonlin for R � 1.7b. At very large pressures (for example, p̂
approaching G) the linear elastic estimate of βββI

core in (4.19) and (4.20) would not be expected to
be accurate, and non-zero core traction would also alter the solution in Appendix B and Table 2
for the non-linear elastic contribution to dilatation. Density functional theory calculations (28) for
core contributions to displacements for various [111] screw dislocation dipole arrangements in α-
iron predict dilatation perpendicular to the dislocation line and contraction, smaller in magnitude,
parallel to the line. These calculations incorporate relaxed periodic boundary conditions, while the
elastic solutions used herein for screw dislocations omit the possibility of deformation parallel to
the infinitely extended dislocation line.

The same comments regarding the polar decomposition of FE near the end of Section 3 apply for
the isolated screw dislocation.

5. Generalisations

5.1 Multiple and moving dislocations

Since FI and FP are not state functions but instead depend on load history for arbitrary deformation
paths, it is most appropriate to consider rate forms of these quantities for generalisation to an element
of a single crystal with multiple dislocations whose number and position change with time. Let the
total velocity gradient

L
def= ḞF−1 = ḞEFE−1 + FEFI(LI + LP)FI−1FE−1; (5.1)

LI def= FI−1ḞI, LP def= ḞPFP−1. (5.2)
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Superposed dots denote material time derivatives, d/dt. Both LI and LP have components referred
to the same intermediate configuration B̃ introduced in Section 2.

Consider a single crystal with one or more glide systems labelled by index k. Let ζ (k) � 0 denote
the line length per unit reference volume of dislocations associated with system k, and let b(k) and m(k)

denote the associated Burgers vector and unit normal to the slip plane in the undeformed perfect
crystal. Restricting attention to slip systems with the same Burgers magnitude, let b(k) = bs(k),
where s(k) is a unit vector in the direction of slip in the perfect reference lattice. Associate a uniform
velocity υ(k) with each dislocation population; immobile dislocations have υ(k) = 0. Edge, screw
and mixed dislocations and loops can contribute to the same or different densities ζ (k) depending
on their velocities and Burgers vectors. Generalisation of (3.13)–(3.15) and (4.6)–(4.8) to multiple
slip systems leads to the usual rate kinematics of continuum crystal plasticity theory:

LP =
∑

k

ζ (k)υ(k)b(k) ⊗ m(k) =
∑

k

γ̇ (k)s(k) ⊗ m(k). (5.3)

Now consider FI generalised to a volume element containing multiple dislocations of various
orientations and various edge and screw components. Motivated by developments in Sections 3
and 4, the linear contribution to FI depends on the path each dislocation has traveled through the
volume element. The magnitude of each dislocation’s contribution toβββI

lin is proportional to its slipped
distance through the volume element under consideration. For example, an edge dislocation that has
traveled almost completely across a cylinder as in Section 3 would contribute (βI

lin)12 → 2b
πR as the

slipped distance → 2R. It is assumed here that the contributions of all dislocations comprising a
given family k are equivalent to those of a density ζ (k) located at the centre of the volume element,
such that, from generalisation of (3.18) and (4.9),

LI
lin =

∑
k

d

dt
[(b2ζ (k)/π )1/2]s(k) ⊗ m(k) = 1

2
√
π

∑
k

[ζ̇ (k)(ζ (k))−1/2]b(k) ⊗ m(k). (5.4)

The factor 1
2
√
π

is replaced by 1
2
√

2
if a hexahedral volume element with equal edge lengths is

considered instead of a cylinder. Dislocations with parallel Burgers vectors of equal length but
opposite sign must be assigned to distinct populations ζ (k) with parallel but oppositely signed
directions s(k) (for example, 24 populations for conventional {111}〈110〉 slip in FCC crystals). With
this convention, υ(k) � 0 and γ̇ (k) � 0 can be enforced. A slightly different form for the strain
rate contribution from dislocation generation (dislocation density rate distinct from slip) has been
proposed elsewhere for shock compressed polycrystalline metals (29).

The non-linear contribution to FI is independent of the path of dislocation motion (the orientation
of the glide plane and the slipped distance), and depends only on the number, orientation and location
of dislocations within the element. For single slip (k = 1) of edge dislocations, straightforward
generalisation of (3.29) leads to

LI
nonlin ≈ β̇ββI

nonlin = −Ab2

4
[ln(πb2ζ ) + 1]ζ̇ (s ⊗ s + m ⊗ m), (5.5)

where A is defined in (3.22) and depends on linear and non-linear elastic properties. A similar
approach with (4.14) and (4.15) could be used for a single system of screw dislocations. An
analytical non-linear solution to (3.21) is not available for dislocation networks often formed under
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activity of multiple interacting slip systems; non-linear solutions for even isolated dislocations are
scarce and approximate as mentioned already. Motivated by forms of βββI

nonlin for isolated edge
and screw dislocations in Sections 3 and 4, as a further approximation it could be assumed that
each dislocation line contributes a radial deformation (a radial expansion or dilatation for material
properties considered herein). For many dislocation lines of various orientations, the net contribution
would then be approximated as a pure volume change:

βββI
nonlin ≈ ϕ(ζ (k))1 = ϕ(ζ (k))eα ⊗ eα, (5.6)

where ϕ is a dimensionless scalar function of dislocation densities. Letting ζ = ∑
k ζ

(k),

ϕ|ζ=0 = 0, ϕ|ζ→ζmax ≈ 0.001 − 0.1, (5.7)

where the estimated magnitude at maximum dislocation density is motivated by Tables 1 and 2 and
therefore applies for a representative crystalline material with properties in Table A.1. Then

LI
nonlin ≈ β̇ββI

nonlin = ϕ̇1 =
∑

k

∂ϕ

∂ζ (k)
ζ̇ (k)1. (5.8)

A dilatational contribution to total deformation has been confirmed experimentally for several metals
(26). Highly structured anisotropic dislocation arrangements, such as those occurring in dislocation
cell walls, would presumably also give a deviatoric contribution to LI

nonlin, but an analytical form for
such contributions remains undetermined. Combining (5.4) and (5.8) and adding a core contribution
as in (3.17),

LI = LI
lin + LI

nonlin + LI
core, (5.9)

where LI
lin is deviatoric (traceless) from (5.4), LI

nonlin is estimated as spherical (diagonal) in (5.8)
(30), and LI

core ≈ β̇ββI
core must be determined from atomic theory. The particular form of the latter

is unknown from the present non-linear elastic analysis, but βββI
core must vanish when ζ = 0 and

presumably LI
core depends on ζ̇ (k). For an isotropic uniform distribution of screw dislocations, LI

core
could be estimated by time differentiation of (4.19) and (4.20), but such an approach would not be
valid for edge dislocations or anisotropic solids, since atomic calculations (22) show that the core
contribution is not spherical.

The total velocity gradient of (5.1) can now be written

L = ḞEFE−1 +
∑

k

bζ (k)
[
υ(k) + 1

2
√
π

{ζ̇ (k)(ζ (k))−3/2}
]

ŝ(k) ⊗ m̂(k) +
∑

k

∂ϕ

∂ζ (k)
ζ̇ (k)1 + L̂

I
core,

(5.10)
where quantities pushed forward by the total (recoverable + residual) lattice deformation are

ŝ(k) def= FEFIs(k), m̂(k) def= (FEFI)−Tm(k), L̂
I
core

def= FEFILI
coreFI−1FE−1. (5.11)

The total velocity gradient contains contributions from elasticity, dislocation motion (LP) and
dislocation generation (LI). Notice that

υ(k) = 0(∀k) ⇒ LP = 0, ζ̇ (k) = 0(∀k) ⇒ LI = 0; (5.12)

ζ (k) = 0(∀k) ⇒ LP = 0 and FI = 1. (5.13)

 



[16:42 5/2/2014 hbt026.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 145 127–158

AN ALTERNATIVE DECOMPOSITION FOR SINGLE CRYSTALS 145

Elastic part ḞEFE−1 is the remainder if L is imposed, and is associated with rigid spin and the rate
of stress applied to the element’s boundaries.

5.2 Energy in constitutive models of crystals with defects

Let εεε be a frame indifferent measure of finite elastic strain, for example,

εεε = 1

2
(FE TFE − 1), εαβ = 1

2
(FE

iαFE
iβ − δαβ ). (5.14)

Let ξ be a dimensionless internal state variable accounting for effects of dislocations on energy
density, for example,

ξ = bζ 1/2 = b

(∑
k

ζ (k)

)1/2

. (5.15)

Total strain energy (free energy omitting temperature dependence) per unit volume in configuration
B0 for an element of crystalline material with dislocations is posited as

� = �(εεε, ξ ) = W (εεε) + ι(ξ ) + ψ(εεε, ξ ). (5.16)

Letting ( )|0 denote a quantity evaluated at the reference state wherein εεε = 0 and ξ = 0, a series
expansion is

W = 1

2

∂2W

∂εαβ∂εγ δ

∣∣∣
0
εαβεγ δ + 1

6

∂3W

∂εαβ∂εγ δ∂εεφ

∣∣∣
0
εαβεγ δεεφ + · · · , (5.17)

ι = 1

2

∂2ι

∂ξ2

∣∣∣
0
ξ2 + 1

6

∂3ι

∂ξ3

∣∣∣
0
ξ3 + · · · , (5.18)

ψ = ∂2ψ

∂εαβ∂ξ

∣∣∣
0
εαβξ + 1

2

∂3ι

∂εαβ∂ξ
2

∣∣∣
0
εαβξ

2 + 1

2

∂3ι

∂εαβ∂εγ δ∂ξ

∣∣∣
0
εαβεγ δξ + · · · , (5.19)

where constant and linear terms in strain or defect density are eliminated so that conjugate
thermodynamic forces vanish in the reference state. Coefficients of strain in elastic energy W are
second-, third-, …order elastic constants for a perfect crystal (see Appendix A). Function ι accounts
for self-energy of dislocations within the externally unloaded (self-equilibrated) volume element,
including local elastic self-energy, core energy and interaction energies (31) among dislocations
within the element (longer range or inter-element dislocation interactions are measured by εεε).
Functionψ accounts for coupling between applied loading and defects, and while usually omitted in
constitutive models, should not be arbitrarily dismissed when defect density approaches its theoretical
maximum. For example, the third term on the right in (5.19) accounts for influence of defects on
tangent elastic coefficients (32).

Term FI is not included explicitly in (5.16) since it is assumed that contributions from defects
are fully represented by ξ . However, ξ = b

√
ζ and FI or its spatial gradient are not necessarily

independent. Let ζ = ζ (ζζζG, ζS), where ζζζG and ζS are the tensor density of geometrically necessary
dislocations and scalar density of statistically stored dislocations, the latter having no net Burgers
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vector. In the theory of continuously distributed dislocations, ζζζG contained in a local volume element
is related to that element’s plastic curvature (15, 25, 33):

ζζζG def= JP−1FP(∇ × FP), ζG
αβ

def= JP−1FP
αI eIJK∂JFP

βK , (5.20)

where JP = det FP = 1 and ∇ is the material gradient in the present context, eIJK are permutation
symbols, and the algebraic sign convention and order of indices in ζζζG varies in the literature (1, 2,
25, 33). It can be shown that (34)

JP−1FP
αI eIJK∂JFP

βK = JEJIFI−1
αδ FE−1

δi eijk∂j(F
I−1
βγ FE−1

γ k ). (5.21)

Though not necessary, if FE−1 obeys integrability conditions ∂kFE−1
αi = ∂iF

E−1
αk , then

ζG
αβ = JEJIFI−1

αδ FE−1
δi FE−1

γ k eijk∂jF
I−1
βγ , (5.22)

which implies ξ = ξ (ζS,FE,FI,∇FI) with ∇ here the spatial gradient, and thus

� = �(εεε, ξ ) � � = �(FE,FI,∇FI, ζS). (5.23)

Note that ∂kFI−1
αβ = −FI−1

αγ FI−1
δβ ∂kFI

γ δ . Global integrability of FE−1 suggests that stress acting on

the boundary of each volume element can be relaxed (in conjuction with local rotation field RE−1)
so that B̄ is a globally compatible configuration, presuming that the crystal is simply connected
in configuration B. Recall that in the theory of continuously distributed dislocations, dislocation
core volumes and displacement jumps across internal slipped surfaces are not resolved explicitly,
so simple connectivity of a deformed body (B) containing dislocation densities becomes possible
(25). Statistically stored dislocations ζS exert no long-range residual elastic fields associated with
incompatibility, but still contribute to (5.23) through short-range and core energies.

Typical gradient-type crystal plasticity models (2, 15, 35) invoke the usual two-term decomposition
F = FEFP of (1.1), and the presence of dislocations within a local volume element is indicated by
∇ × FP �= 0 as in (5.20). However, this description alone does not account for statistically stored
dislocations, which may exist regardless of whether or not the curl of the plastic deformation gradient
vanishes; a non-vanishing curl only indicates the presence of geometrically necessary dislocations.
In pure ductile metals under homogeneous deformation, statistically stored dislocations would be
expected to contribute most strongly to strain hardening and stored energy. Furthermore, since
det FP = 1 in slip-based crystal plasticity theory, local residual dilatation cannot be captured by
such models invoking (1.1). In contrast, and though perhaps more complicated, the present theory
invoking (1.2) can account for residual dilatation (as well as residual lattice shape change) via the FI

term, which in turn is affected by the total dislocation density, including both geometrically necessary
and statistically stored dislocations.

5.3 Constitutive relations and dissipation inequality

Under the present idealisation of isothermal conditions, the local balance of energy and entropy
inequality are (35)

U̇ = τττ : L, U̇ − �̇ � 0, (5.24)
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where U is internal energy per unit reference volume, τττ = Jσσσ is macroscopic symmetric Kirchhoff
stress with σσσ Cauchy stress and J = det F = JEJIJP = JEJI, and � represents free energy density.
Using (5.10) and (5.16),

U̇ = τττ : [LE + FEFI(LP + LI)FI−1FE−1]

= (FE−1τττFE−T) : ε̇εε + b
∑

k

τ (k)ζ (k)υ(k) + b

2
√
π

∑
k

τ (k)ζ̇ (k)(ζ (k))−1/2

− 3P
∑

k

∂ϕ

∂ζ (k)
ζ̇ (k) + τττ : L̂

I
core (5.25)

is total external stress power, and

�̇ = ∂�

∂εεε
: ε̇εε + ∂�

∂ξ
ξ̇ , (5.26)

is the free energy rate, where resolved shear stress and reference pressure (energy per unit reference
volume) are

τ (k) def= τττ : (ŝ(k) ⊗ m̂(k)) = τij ŝ
(k)
i m̂(k)

j , P
def= −1

3
τkk = Jp. (5.27)

Substituting into the second of (5.24) and considering admissible processes,

τττ (FE, ξ ) = FE ∂�

∂εεε
FE T, h(εεε, ξ )

def= ∂�

∂ξ
; (5.28)

b
∑

k

τ (k)ζ (k)υ(k) + b

2
√
π

∑
k

τ (k){ζ̇ (k)(ζ (k))−1/2} − 3P
∑

k

∂ϕ

∂ζ (k)
ζ̇ (k) + τττ : L̂

I
core − hξ̇ � 0.

(5.29)

Equations (5.28) are the hyperelastic stress-strain law and definition of the thermodynamic conjugate
force to internal state variable ξ . If (5.15) applies, then dissipation inequality (5.29) becomes

b
∑

k

τ (k)ζ (k)υ(k) + τττ : L̂
I
core +

∑
k

ζ̇ (k)
[

b

2
√
π
τ (k)(ζ (k))−1/2 − 3P

∂ϕ

∂ζ (k)
− b

2
hζ−1/2

]
� 0.

(5.30)

Consider each term in (5.30). The first term is dissipation from slip of mobile dislocations. The second
is stress power associated with deformation of the volume element from core effects, noting that only
the symmetric part of L̂I

core contributes. Remaining terms in square brackets are associated directly
with dislocation density rates ζ̇ (k). The first term is due to shearing associated with the rate of FI, in
the simple case of an isolated dislocation resulting from the linear elastic contribution to βββI

lin. The
second is due to dilatation associated with the rate of FI, for an isolated dislocation resulting from the
non-linear elastic contribution toβββI

nonlin. The b2h term represents free energy storage associated with
microscopic strain energy, core energy and interaction energies of dislocations within the volume
element. Dissipation from slip is positive when resolved shear stress τ (k) and dislocation velocityυ(k)

share the same sign. Remaining terms can contribute positively or negatively to dissipation/storage
of energy because algebraic signs of ζ̇ (k) and its multipliers are unrestricted; dislocation rates may
be positive or negative as defects enter or exit the volume, or are generated or annihilated.
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6. Examples

6.1 Simple shear

Consider a single crystalline cylindrical volume element of initial volume V = πR2L with L parallel
to unit vector e3. Let this element be subject to homogeneous simple shear deformation of the form

F = FEFIFP = 1 +�e1 ⊗ e2 = 1 +�s ⊗ m. (6.1)

Applied shear deformation is �, and the crystal is assumed perfectly oriented for single slip, with
s = e1 and m = e2. For this 2D problem, dislocation density ζ consists of a single family of edge
dislocations with b = bs. Since s · m = 0, cumulative plastic deformation is of the form in (3.13):

FP = exp(γ s ⊗ m) = 1 + γ s ⊗ m, (6.2)

with cumulative slip γ to be determined in the analysis as a function of �. A rate independent yield
criterion is used here since � is increased monotonically at a fixed rate:

τ
def= τττ : (ŝ ⊗ m̂) � τ0 + αGb

√
ζ , (6.3)

with τ the resolved Kirchhoff stress, τ0 the initial yield strength, and α a constant in the usual Taylor
hardening model (36). Linear hardening with modulus H is assumed such that Hγ = αb

√
ζ , leading

to the following dimensionless yield criterion and evolution equation for dislocation density:

τ/G � τ0/G + Hγ ; ζ = [Hγ /(αb)]2. (6.4)

Residual lattice deformation is, from (3.30), the second of (6.4), and assuming null core traction,

FI(γ ) = 1 + Hγ√
πα

s ⊗ m − A

4

H2γ 2

α2
ln
πH2γ 2

α2
(s ⊗ s + m ⊗ m). (6.5)

Under isothermal conditions, and omitting coupling between internal state variable ξ = b
√
ζ and

elastic Green strain εεε = 1
2 (FE TFE − 1), (5.16) and (5.17) can be combined to give free energy

density � of the form below, to order three in elastic strain:

� = 1

2
Cαβγ δεαβεγ δ + 1

6
Cαβγ δεφεαβεγ δεεφ + ι(ξ ), (6.6)

where second- and third-order elastic constants Cαβγ δ and Cαβγ δεφ are described in Appendix A,
and stored energy of cold work ι is inconsequential in the stress-strain response in this example.
Kirchhoff stress is, from (5.28),

τττ (FE) = FE ∂�

∂εεε
FE T = Jσσσ , (6.7)

with σσσ the Cauchy stress, noting J = det F = JEJI = 1 from (6.1) and (6.2).
Solution of the problem proceeds as follows. Deformation � is updated incrementally. For each

increment, use of (6.1), (6.2), (6.5), and (6.7) enables iterative solution of yield condition (6.4)
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Fig. 5 Shear stress (a) and Cauchy pressure (b) predicted using three-term (F = FEFIFP) and two-term
(F = FEFP) models for single crystal in simple shear and oriented for single slip, with hardening modulus H

for slip γ , with inequality holding during elastic loading (γ = 0) and equality holding upon yield
(γ > 0). With F(�) and γ known, all other quantities of interest (σσσ , ζ , etc.) can be computed.
Representative material properties are taken from Table A.1 of Appendix A, leading to A = 1

12 as in

Section 3. Also, τ0 = 1
100 G, α = 1

2 , and two values of H ( 1
5 and 1) are considered.

Shear stress σ12 and pressure p = −1
3 trσσσ are shown in Figs 5(a) and 5(b). Results labelled

‘F = FEFP’ are obtained by setting FI = 1 instead of (6.5), with all other model features the
same as for the three-term theory with F = FEFIFP described above. Shear stress increases in the
plastic regime with increasing linear hardening modulus H, as expected. Shear stresses are lower
when the three-term model is used because FI accommodates some of the applied shear strain that
would otherwise be accommodated by FE. Pressures are higher when the three-term model is used
because FI includes dilatation JI = 1/JE > 1. Although nearly the same shear stress response could
be obtained by selecting different values of H for two- and three-term models, only the three-term
theory is able to properly account for pressure rise resulting from dilatation due to dislocations; such
dilatation has been observed in experiments (26) and atomic simulations (21, 28).

6.2 Uniaxial compression

Now consider a single crystalline cylindrical volume element of initial volume V = πR2L with L
parallel to unit vector e1. Let this element be subject to homogeneous uniaxial strain of the form

F = FEFIFP = (1 −�)e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3. (6.8)

Applied compression is � � 0, and the crystal structure is taken as FCC, with cube axes [100],
[010] and [001] parallel to e1, e2 and e3, so compression occurs along [100] in this problem.
This example is representative of planar shock compression of a cubic single crystal (37), though
here temperature/entropy effects are omitted for simplicity. From symmetry (37), 8 of 12 possible
{111}〈110〉 slip systems are active upon yielding (k = 1, 2, . . . 8), each with the same cumulative
slip γ = γ (k) = ∫

γ̇ (k)dt. For monotonic loading, integration of (5.3) results in plastic deformation

 



[16:42 5/2/2014 hbt026.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 150 127–158

150 J. D. CLAYTON

of the following form, to order three in γ :

FP = exp

(
γ
∑

k

s(k) ⊗ m(k)

)

≈ 1 + γ
∑

k

s(k) ⊗ m(k) + γ 2

2

(∑
k

s(k) ⊗ m(k)

)2

+ γ 3

6

(∑
k

s(k) ⊗ m(k)

)3

, (6.9)

with cumulative slip γ to be determined in the analysis as a function of�. Equations similar to (6.3)
and (6.4) apply:

τ (k) = τττ : (ŝ(k) ⊗ m̂(k)) � τ0 + αGb
√
ζ = τ0 + GHγ ; ζ = [Hγ /(αb)]2. (6.10)

Here ζ = ∑
k ζ

(k) = 8ζ (k) again is assumed to consist entirely of straight edge dislocations with
b(k) = bs(k). The linear elastic contribution to FI is given by analogue of (3.18) and (5.4); the
non-linear elastic contribution a volume change of the form in (3.22), (3.23), (5.6), and (5.8); core
traction is again omitted for simplicity. These assertions, with the second of (6.10), result in

FI(γ ) = 1 + Hγ√
8πα

∑
k

s(k) ⊗ m(k) − A

6

H2γ 2

α2
ln
πH2γ 2

α2
eα ⊗ eα. (6.11)

The non-linear hyperelastic response is again dictated by (6.6) and (6.7). The same numerical solution
procedure and material properties used in Section 6.1 apply here.

Axial true stress −σ11 and dislocation density ζ are shown in Figs 6(a) and 6(b), the latter
normalised by ζmax = 1

πb2 . Results labelled ‘F = FEFP’ are obtained by setting FI = 1 instead of

(6.11), with all other model features the same as for the three-term theory with F = FEFIFP. Axial
stresses [Fig. 6(a)] are identical for all cases until yield is attained at � = 1 − J ≈ 0.017, which
would correspond to the Hugoniot elastic limit in a planar shock experiment. Stresses increase in
the plastic regime with increasing linear hardening modulus H, as expected. Differences between

Fig. 6 Axial stress (a) and dislocation density (b) predicted using three-term (F = FEFIFP) and two-term
(F = FEFP) models for FCC single crystal compressed along [100], with hardening modulus H
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two- and three-term models are negligible for the lower hardening modulus H = 1
5 , but not for

higher hardening with H = 1. Dislocation densities [Fig. 6(b)] predicted by the two-term theory
increasingly exceed those predicted by the three-term theory as γ or H is increased. At � ≈ 0.2,
dislocation densities predicted using H = 1

5 are of comparable magnitude to maximum densities
observed during shock compression experiments on Cu and Cu-Al alloys (38).

6.3 Discussion

The presentation in Sections 6.1 and 6.2 demonstrates how a constitutive model incorporating the
three-term decomposition (1.2) can be implemented, in a straightforward way, for crystal volumes
undergoing homogeneous deformation. Results have indicated, for representative material proper-
ties, the applied strain required for the FI term to significantly affect stresses. Differences between the
present theory and the usual two-term description become most apparent at large strain in crystals with
strong hardening associated with defect accumulation. Validity of the theory for addressing residual
lattice deformation has been established, within an order of magnitude, by comparison with results
of atomic simulation in Table 1. Comparison of theoretically predicted dilatation with experiments
reporting energy of cold work and residual volume change has been presented elsewhere (17, 26),
wherein again order-of-magnitude accuracy has been confirmed. As suggested by derivations and
calcuations in Sections 3 and 4 for edge and screw dislocations, the magnitude of residual lattice
contribution from defect(s) within a local volume, FI, can exceed several percent as the theoretical
maximum dislocation density is approached, but is small for dilute dislocation concentrations. Here
‘magnitude of’ refers to the largest absolute value of any stretch component. Bulk dislocation
densities of up to 2–10 per cent of the theoretical maximum have been observed in atomic and
discrete dynamic simulations of shock loading (39), which would impart substantial contributions
to FI with a corresponding effect on observed pressure-density behaviour in shock compression
experiments (30). Even if the bulk dislocation density is small when averaged over a large volume of
crystal, the local dislocation density at volume elements comprising dislocation cells and cell walls
during latter stages of work hardening may be quite large (for example, approaching the theoretical
maximum), so the magnitude of FI would be substantial for those elements.

More extensive algorithms and numerical simulations are needed for applying the theory to
problems involving heterogeneous deformation; such developments are reserved for future work.
For example, local regions with dislocation densities on the order of 1016 m−2 have been reported for
a nickel crystal subjected to wedge indentation (40), corresponding to ζ/ζmax ≈ 2 × 10−3. Referring
to results in Table 1, FI would be expected to be non-trivial in such regions.

By definition, FI → 1 as the dislocation content in a volume element goes to zero (ζ → 0). If, as
in the model of Sections 6.1 and 6.2, plastic strain hardening results from accumulated dislocations,
then FI → 1 for an elastic-perfectly plastic crystal through which dislocations pass but do not
accumulate.

Several (co)authored previous works (7, 8, 9, 17) proposed three-term decompositions but did
not derive their origins in the context of elastic solutions for single dislocations and did not
develop constitutive frameworks identical to that in Section 5. Content in the monograph (12)
mostly summarises content of such prior work, in Section 9.1.3 leaving the physical definition of
the third term ambiguous in general thermomechanical analysis, similar to (5). A different three-
term decomposition of the deformation gradient, written FS = FLCFLDFD, has also recently been
developed (14). In this different approach, following early concepts of dislocation field theory
(1, 4), FS = F is the total shape deformation of a material element, FD represents rigid slip due
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to dislocations currently within the element and those that have passed completely through, FLD is
lattice deformation that returns the element to a compact state (residual elastic and core effects), and
FLC is recoverable lattice deformation associated with loading of the external boundary of the entire
body. Generally, FD and FLD are incompatible fields (they do not obey integrability conditions),
but FLC−1 is compatible and is the spatial gradient of a vector field. Both the present approach
and that in (14) derive a multiplicative decomposition for single edge and screw dislocations, and
then generalise to multiple defects. However, steps followed in each approach differ, leading to
different interpretations of the third (middle) term in the decomposition associated with residual
lattice distortion. This leads to different numerical results in the present work and in (14). Example
calculations for simple shear and uniaxial compression in Sections 6.1 and 6.2 are the first such
reported using the current three-term description and have not been presented elsewhere.Appendices
herein contain non-linear elastic derivations and treatment of anisotropy not given in (14).

7. Conclusions

A three-term multiplicative decomposition for an element of single crystal containing dislocations
has been derived. In addition to usual terms associated with elastic deformation and cumulative
dislocation slip through the element, a third term has been incorporated that accounts for defects
within. This third term is further divided into contributions from the incompletely slipped surface
(a ‘linear’ term), elasticity, and core effects. Expressions have been derived, and magnitudes
estimated, for contributions to this third term for cylindrical elements containing a single edge or
screw dislocation line. For dislocation densities approaching the theoretical limit, such magnitudes
may be comparable to applied elastic strains needed to initiate slip. Upon generalisation of the
theory to crystals with multiple defects, appropriate general forms of free energy functions have
been suggested and analysed in the context of the three-term decomposition. The theory has been
implemented in constitutive model calculations for simple shear and uniaxial strain compression,
with differences in results from those of usual two-term crystal plasticity apparent for large strains
and strong plastic hardening. Primary advantages of the proposed three-term description are (i) its
precise delineation of contributions from dislocation motion and dislocation generation to irreversible
deformation, and (ii) its ability to quantify local residual elastic strains, including volume changes.
Neither phenomenon can be captured by two-term crystal plasticity wherein the rate of plastic
deformation results only from slip rates described by the usual Orowan equation.
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APPENDIX A

Non-linear elastic coefficients

Let uα(Xβ ) denote elastic displacement and Xβ Lagrangian coordinates; Green elastic strain is

Eαβ = 1

2

(
∂uα
∂Xβ

+ ∂uβ
∂Xα

+ ∂uγ
∂Xα

∂uγ
∂Xβ

)
. (A.1)
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Strain energy density W written as a Taylor polynomial is

W = 1

2
Cαβγ δEαβEγ δ + 1

6
Cαβγ δεφEαβEγ δEεφ + · · · . (A.2)

For homogeneous isotropic materials, elastic constant tensors are of the form

Cαβγ δ = λ(δαβδγ δ) + G(δαγ δβδ + δαδδβγ ), (A.3)

Cαβγ δεφ = ν1[δαβδγ δδεφ]
+ ν2[δαβ (δγ εδδφ + δγφδδε ) + δγ δ(δαεδβφ + δαφδβε ) + δεφ(δαγ δβδ + δαδδβγ )]
+ ν3[δαγ (δβεδδφ + δβφδδε ) + δβδ(δαεδγφ + δαφδγ ε )

+ δαδ(δβεδγφ + δβφδγ ε ) + δβγ (δαεδδφ + δαφδδε )]. (A.4)

Let CIJ and CIJK denote second- and third-order constants in Voigt notation, where indices 1, 2, . . . 6. Second-
order elastic constants obey the familiar relations

λ = C12, G = C44 = 1

2
(C11 − C12), K = λ+ 2

3
G, ν = λ

2(λ+ G)
, (A.5)

where G, K and ν are shear modulus, bulk modulus and Poisson’s ratio in the reference state. Third-order elastic
constants obey

ν1 = C123, ν2 = C144 = 1

2
(C112 − C123), ν3 = C456 = 1

8
(C111 − 3C112 + 2C123). (A.6)

Let K̂(p) and Ĝ(p) denote incremental bulk and shear moduli of an isotropic elastic solid subjected to dilatation
induced by Cauchy pressure p. Then (15, 41)

K ′ def= (dK̂/dp)|p=0 = −[ν1 + 2ν2 + (8/9)ν3]/K, (A.7)

G′ def= (dĜ/dp)|p=0 = −[λ+ G + ν2 + (4/3)ν3]/K . (A.8)

Ultrasonic measurements and various high pressure experiments suggest that the pressure derivative of the bulk
modulus in the reference state obeys 2 < K ′ < 7 for most pure elemental crystalline solids, with 3 < K ′ < 6
typical (42). Experimental data also suggest that the pressure derivative of the thermodynamic shear modulus
in the reference state obeys 0 < G′ < 3 for most pure elements (41). Representative values used in this article
are tabulated in Table A.1. Note λ = G ⇔ ν = 1

4 , whereas for crystalline metals and minerals typically
0.05 < ν < 0.45.

Table A.1 Representative elastic constants and Burgers magnitude b.

λ/G K ′ G′ ν2/G ν3/G b [m]

1 4 1 −11
7 − 11

7 3 × 10−10
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APPENDIX B

Radial displacement for screw dislocation in non-linear isotropic cylinder

Expressions for c1, c2 and c3 of (4.12) are listed or newly derived here. Considered only is the case when
pressure p̂ vanishes on the dislocation core boundary at ρ = r. Constant c3 is (15)

c3 = b2(G + ν3)

8π2(λ+ 2G)
, (B.1)

with λ the Lamé modulus and ν3 a third-order elastic constant. Constants c1 and c2 are determined from
vanishing traction conditions at ρ = r and ρ = R, requiring simultaneous solution of

−2G

r2
c1 + 2(λ+ G)c2 + b2(G + ν3)

8π2r2
− Gc3

ln r

r2
+ b2(λ+ ν2)

8π2r2
= 0, (B.2)

−2G

R2
c1 + 2(λ+ G)c2 + b2(G + ν3)

8π2R2
− Gc3

ln R

R2
+ b2(λ+ ν2)

8π2R2
= 0, (B.3)

where ν2 is another third-order elastic constant. After some algebra,

c1 = b2

16π2

[
1 + λ+ ν2 + ν3

G
− (G + ν3)

(λ+ 2G)

(1 − r2/R2) ln r − (r2/R2) ln(R/r)

1 − r2/R2

]
, (B.4)

c2 = b2

16π2r2

[
G(G + ν3)

(λ+ G)(λ+ 2G)

][
ln r − (r2/R2) ln(R/r)

1 − r2/R2

]
. (B.5)

While generic forms of (B.2) and (B.3) are listed by Teodosiu (15), particular solution (B.4) and (B.5) is newly
derived in the present work. Choosing typical values from Table A.1,

c1 ≈ b2

80π2

[
(r2/R2) ln(R/r) − (1 − r2/R2) ln r

1 − r2/R2
− 5

]
, (B.6)

c2 ≈ − b2

160π2r2

[
(r2/R2) ln(R/r)

1 − r2/R2

]
, c3 ≈ − b2

40π2
. (B.7)

Radial displacement (4.12) at ρ = R becomes

η(R) = c1

R
+ c2R + c3

ln R

R
, (B.8)

where results in Fig. 3 and Table 2 of Section 4 correspond to r = b of Table A.1.

APPENDIX C

Elastic anisotropy

Closed-form analytical elastic solutions for dislocations in anisotropic non-linear elastic solids do not appear to
exist, though numerical integration of lengthy and complex approximations available in the literature (19) may
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be possible. Analytical solutions can be obtained, however, for volume change �V/V resulting from (3.21)
in crystals with cubic symmetry, effectively replacing the first equality in (3.22) or (4.10). In what follows,
effects of anisotropy on dilatation are quantified for several kinds of straight dislocations; presumably, effects of
anisotropy on deviatoric parts ofβββI

nonlin are of comparable magnitude, though this cannot be proven at present.
For a density ζ = L/V of edge, screw, or mixed dislocations, the residual volume change in a cubic crystal

can be written as (16, 17)

�V

V
=
[

1

K
(K ′ − 1)ē + 1

G

(
G′ − G

K

)
e′ + 1

Z

(
Z ′ − Z

K

)
ẽ

]
ζ, (C.1)

where any three independent second-order elastic constants at the reference state are related by

K = 1

3
(C11 + 2C12), G = 1

2
(C11 − C12), Z = C44 − G, z = C44

G
, (C.2)

and Z ′ is the pressure derivative of tangent stiffness corresponding to Z at the reference state. Dilatational
energy per unit dislocation length ē and deviatoric energies e′ and ẽ are (16), (17)

ē = K

2L

∫
V

(
∂uα
∂Xα

)2
dV , e′ = G

L

∫
V

[
1

2

(
∂uα
∂Xβ

∂uβ
∂Xα

+ ∂uα
∂Xα

∂uβ
∂Xβ

)
− 1

3

(
∂uα
∂Xα

)2
]

dV , (C.3)

ẽ = Z

L

∫
V

[
1

2

(
∂uα
∂Xβ

∂uβ
∂Xα

+ ∂uα
∂Xα

∂uβ
∂Xβ

)
−
(
∂u1

∂X1

)2
−
(
∂u2

∂X2

)2
−
(
∂u3

∂X3

)2
]

dV . (C.4)

Total dislocation energy per unit length e can be written (43)

e = ē + e′ + ẽ = κ
b2

4π
ln

R

r
, (C.5)

where κ is the energy factor that depends on elastic constants and dislocation geometry. Define

f̄
def= ē/e, f ′ def= e′/e, f̃

def= ẽ/e; f̄ + f ′ + f̃ = 1. (C.6)

Furthermore, let κiso, f̄iso and f ′
iso denote corresponding quantities in an isotropic elastic solid containing a

dislocation having the same geometry and elastic properties (G,K,G′,K ′), noting that (Z, Z ′, ẽ, f̃ ) all vanish
for the isotropic case. Then the ratio of residual elastic volume change in a cubic crystal to that in such an
isotropic solid can be written

�V

�Viso
= f̄ (K ′ − 1)/K + f ′(G′ − G/K)/G + f̃ (Z ′ − Z/K)/Z

f̄iso(K ′ − 1)/K + f ′
iso(G′ − G/K)/G

κ

κiso
= M

κ

κiso
. (C.7)

If f̄ ≈ f̄iso and f̃ ≈ 1
3 are assumed, then 1

2 � M � 2 are reasonable bounds on M when considering the non-linear
elastic properties reported for 10 cubic metals in (26).
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Fig. C.1 Energy factor for cubic crystal normalised by energy factor in isotropic solid

Considered now are mixed dislocations with tangent lines parallel to [101]. For a 1
2 〈110〉{111} dislocation

(typical in FCC crystals) and for a 1
2 〈111〉{110} dislocation (typical in BCC), respectively (43),

κ = 1

4
(κ1 + 2κ2 + κ3) (FCC), κ = 1

3
(κ2 + 2κ3) (BCC); (C.8)

κ1 =
(

Ĉ + 2ν

1 − 2ν

)(
z(1 − 2ν)[Ĉ − 2ν/(1 − 2ν)]

(2 − 2ν)[Ĉ + 2ν/(1 − 2ν) + 2z]

)
G, (C.9)

κ2 = κ1

[
2 − 2ν

1 + (1 − 2ν)z

]1/2
, κ3 = z1/2G, Ĉ =

[
2 − 2ν

1 − 2ν

(
1

1 − 2ν
+ z

)]1/2
. (C.10)

Ratio κ/κiso depends only on dislocation type, ν, and z, noting that z = 1 for isotropic elasticity. Values of
κ/κiso are shown in Fig. C.1 over the range 0 � ν � 0.49 for anisotropy ratios z = 1

4 and z = 4, properties
which bound many cubic metals (for example, z ≈ 1.0 for W (44), z ≈ 2.4 for Fe (28), and z ≈ 3.2 for Cu
(45)), the alkali metals being a notable exception (45). From Fig. C.1, 1

3 � κ/κiso � 3. Combining this result

with previously stated bounds on M yields, from (C.7), the estimate 1
6 � �V/�Viso � 6. Relevance of the

isotropic approximation used in Sections 3 and 4 to determine non-linear elastic contributions to FI can be
assessed for a particular cubic crystal by substitution of its elastic properties into the above equations, or into
analogous equations that can be derived using the same procedure with anisotropic energy factors available for
other edge, screw, or mixed dislocation types (43).
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